Coding of Reward Risk by Orbitofrontal Neurons Is Mostly Distinct from Coding of Reward Value

نویسندگان

  • Martin O'Neill
  • Wolfram Schultz
چکیده

Risky decision-making is altered in humans and animals with damage to the orbitofrontal cortex. However, the cellular function of the intact orbitofrontal cortex in processing information relevant for risky decisions is unknown. We recorded responses of single orbitofrontal neurons while monkeys viewed visual cues representing the key decision parameters, reward risk and value. Risk was defined as the mathematical variance of binary symmetric probability distributions of reward magnitudes; value was defined as non-risky reward magnitude. Monkeys displayed graded behavioral preferences for risky outcomes, as they did for value. A population of orbitofrontal neurons showed a distinctive risk signal: their cues and reward responses covaried monotonically with the variance of the different reward distributions without monotonically coding reward value. Furthermore, a small but statistically significant fraction of risk responses also coded reward value. These risk signals may provide physiological correlates for the role of the orbitofrontal cortex in risk processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential coding of uncertain reward in rat insular and orbitofrontal cortex

Anterior insular and orbitofrontal cortex (AIC and OFC, respectively) are known to play important roles in decision making under risk. However, risk-related AIC neural activity has not been investigated and it is controversial whether the rodent OFC conveys genuine risk signals. To address these issues, we examined AIC and OFC neuronal activity in rats responding to five distinct auditory cues ...

متن کامل

Reward Value Coding Distinct From Risk Attitude-Related Uncertainty Coding in Human Reward Systems

When deciding between different options, individuals are guided by the expected (mean) value of the different outcomes and by the associated degrees of uncertainty. We used functional magnetic resonance imaging to identify brain activations coding the key decision parameters of expected value (magnitude and probability) separately from uncertainty (statistical variance) of monetary rewards. Par...

متن کامل

The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.

The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological signatures of the in...

متن کامل

Risk prediction error coding in orbitofrontal neurons.

Risk is a ubiquitous feature of life. It plays an important role in economic decisions by affecting subjective reward value. Informed decisions require accurate risk information for each choice option. However, risk is often not constant but changes dynamically in the environment. Therefore, risk information should be updated to the current risk level. Potential mechanisms involve error-driven ...

متن کامل

Adaptation of reward sensitivity in orbitofrontal neurons.

Animals depend on a large variety of rewards but their brains have a limited dynamic coding range. When rewards are uncertain, neuronal coding needs to cover a wide range of possible rewards. However, when reward is likely to occur within a specific range, focusing the sensitivity on the predicted range would optimize the discrimination of small reward differences. One way to overcome the trade...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2010